Utilizing AI for Predicting Demand and Managing Supply Chains in E-commerce Organizations

Authors

DOI:

https://doi.org/10.51903/jmi.v3i2.32

Keywords:

Artificial Intelligence (AI), Demand Forecasting, Supply Chain Managemen, E-Commerce, Operational Efficiency

Abstract

This research examines the use of Artificial Intelligence (AI) for demand prediction and supply chain management in Indonesian e-commerce firms. E-commerce businesses face significant challenges in predicting consumer demand fluctuations and maintaining supply chain efficiency. Using a mixed-method approach, data were collected from eight e-commerce companies to evaluate the impact of AI on demand forecasting accuracy, supply chain efficiency, and operational cost reduction. The findings show that AI improves demand forecasting accuracy by 30%, accelerates delivery times by 40%, and reduces operational costs by 20%. However, data quality remains a key challenge in maximizing AI performance. This research contributes to the literature on supply chain management and AI, offering practical insights for companies aiming to enhance their operational efficiency through AI adoption. Recommendations include improving data quality, employee training, and gradual AI implementation to achieve optimal outcomes.

References

Aliyev, A. G., Shahverdiyeva, R. O., & Hagverdiyeva, U. H. (2024). Modernization of E-Commerce and Logistics Platforms of Enterprises Based on Artificial Intelligence Technology. Advances in Transdisciplinary Engineering, 48(1), 170–181. https://doi.org/10.3233/ATDE231327

Almaghrebi, A., Aljuheshi, F., Rafaie, M., James, K., & Alahmad, M. (2020). Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods. Energies, 13(16), 4231. https://doi.org/10.3390/EN13164231

Almani, A. A. ;, Han, X., Mohammed, O. A., Mahmoud, K., Shaaban, M., Ali, A., Almani, A. A., & Han, X. (2023). Real-Time Pricing-Enabled Demand Response Using Long Short-Time Memory Deep Learning. Energies, 16(5), 2410. https://doi.org/10.3390/EN16052410

Barata, S. F. P. G., Ferreira, F. A. F., Carayannis, E. G., & Ferreira, J. J. M. (2024). Determinants of E-Commerce, Artificial Intelligence, and Agile Methods in Small- and Medium-Sized Enterprises. IEEE Transactions on Engineering Management, 71(1), 6903–6917. https://doi.org/10.1109/TEM.2023.3269601

Bich, T. T., Vo, C., Le, P. H., Nguyen, N. T., Le, T., Nguyen, T., & Do, N. H. (2021). Demand Forecasting and Inventory Prediction for Apparel Product using the ARIMA and Fuzzy EPQ Model. Journal of Engineering Science and Technology Review, 14(2), 80–89. https://doi.org/10.25103/jestr.142.11

Chaerudin, S. M., & Syafarudin, A. (2021). The Effect Of Product Quality, Service Quality, Price On Product Purchasing Decisions On Consumer Satisfaction. Ilomata International Journal of Tax and Accounting, 2(1), 61–70. https://doi.org/10.52728/IJTC.V2I1.202

Dey, S. (2021). Artificial Intelligence: A New Driver for Managing Customers in E-Commerce Smartly. In Applications of Artificial Intelligence in Business and Finance (1st ed.). Apple Academic Press. https://doi.org/10.1201/9781003129639-2

Fonseka, K., Jaharadak, A. A., & Raman, M. (2022). Impact of E-commerce Adoption on Business Performance of SMEs in Sri Lanka; moderating Role of Artificial Intelligence. International Journal of Social Economics, 49(10), 1518–1531. https://doi.org/10.1108/IJSE-12-2021-0752/FULL/XML

He, P., Wang, T. Y., Mardani, A., Wang, X. J., & Chen, Z. S. (2024). Selling Mode Selection and AI Service Strategy in An E-Commerce Platform Supply Chain. Computers & Industrial Engineering, 197(1), 110560. https://doi.org/10.1016/J.CIE.2024.110560

Helo, P., & Hao, Y. (2022). Artificial Intelligence in Operations Management and Supply Chain Management: An Exploratory Case Study. Production Planning & Control, 33(16), 1573–1590. https://doi.org/10.1080/09537287.2021.1882690

Hossain, M. A., Agnihotri, R., Rushan, M. R. I., Rahman, M. S., & Sumi, S. F. (2022). Marketing Analytics Capability, Artificial Intelligence Adoption, and Firms’ Competitive Advantage: Evidence from The Manufacturing Industry. Industrial Marketing Management, 106(1), 240–255. https://doi.org/10.1016/J.INDMARMAN.2022.08.017

Islam, M. T., Ayon, E. H., Ghosh, B. P., MD, S. C., Shahid, R., puja, A. R., Rahman, S., Bhuiyan, M. S., & Nguyen, T. N. (2024). Revolutionizing Retail: A Hybrid Machine Learning Approach for Precision Demand Forecasting and Strategic Decision-Making in Global Commerce. Journal of Computer Science and Technology Studies, 6(1), 33–39. https://doi.org/10.32996/JCSTS.2024.6.1.4

Khan, M. A., Saqib, S., Alyas, T., Ur Rehman, A., Saeed, Y., Zeb, A., Zareei, M., & Mohamed, E. M. (2020). Effective Demand Forecasting Model Using Business Intelligence Empowered with Machine Learning. IEEE Access, 8(1), 116013–116023. https://doi.org/10.1109/ACCESS.2020.3003790

Khrais, L. T. (2020). Role of Artificial Intelligence in Shaping Consumer Demand in E-Commerce. Future Internet, 12(12), 226. https://doi.org/10.3390/FI12120226

Kim, S. Y., & Nguyen, V. T. (2022). Supply Chain Management in Construction: Critical Study of Barriers to Implementation. International Journal of Construction Management, 22(16), 3148–3157. https://doi.org/10.1080/15623599.2020.1843768

Leung, K. H., Mo, D. Y., Ho, G. T. S., Wu, C. H., & Huang, G. Q. (2020). Modelling Near-Real-Time Order Arrival Demand in e-Commerce Context: A Machine Learning Predictive Methodology. Industrial Management and Data Systems, 120(6), 1149–1174. https://doi.org/10.1108/IMDS-12-2019-0646/FULL/XML

Li, J., Cui, T., Yang, K., Yuan, R., He, L., & Li, M. (2021). Demand Forecasting of E-Commerce Enterprises Based on Horizontal Federated Learning from the Perspective of Sustainable Development. Sustainability, 13(23), 13050. https://doi.org/10.3390/SU132313050

Liladhar Rane, N., Choudhary, S. P., & Rane, J. (2024). Acceptance of Artificial Intelligence Technologies in Business Management, Finance, and E-Commerce: Factors, Challenges, and Strategies. Studies in Economics and Business Relations, 5(2), 23–44. https://doi.org/10.48185/SEBR.V5I2.1333

Lina, R. (2022). Improving Product Quality and Satisfaction as Fundamental Strategies in Strengthening Customer Loyalty. AKADEMIK: Jurnal Mahasiswa Ekonomi & Bisnis, 2(1), 19–26. https://doi.org/10.37481/JMEB.V2I1.245

Liu, K. S., & Lin, M. H. (2021). Performance Assessment on the Application of Artificial Intelligence to Sustainable Supply Chain Management in the Construction Material Industry. Sustainability, 13(22), 12767. https://doi.org/10.3390/SU132212767

Mediavilla, M. A., Dietrich, F., & Palm, D. (2022). Review and Analysis of Artificial Intelligence Methods for Demand Forecasting in Supply Chain Management. Procedia CIRP, 107(1), 1126–1131. https://doi.org/10.1016/J.PROCIR.2022.05.119

Mukhamedjanova, K. A. (2020). Concept of Supply Chain Management. Journal of Critical Reviews, 7(2), 759–766. https://doi.org/10.31838/jcr.07.02.139

Onile, A. E., Machlev, R., Petlenkov, E., Levron, Y., & Belikov, J. (2021). Uses of The Digital Twins Concept for Energy Services, Intelligent Recommendation Systems, and Demand Side Management: A Review. Energy Reports, 7(1), 997–1015. https://doi.org/10.1016/J.EGYR.2021.01.090

Pallathadka, H., Ramirez-Asis, E. H., Loli-Poma, T. P., Kaliyaperumal, K., Ventayen, R. J. M., & Naved, M. (2023). Applications of Artificial Intelligence in Business Management, E-Commerce and Finance. Materials Today: Proceedings, 80(1), 2610–2613. https://doi.org/10.1016/J.MATPR.2021.06.419

Qi, B., Shen, Y., & Xu, T. (2023). An Artificial-Intelligence-Enabled Sustainable Supply Chain Model for B2C E-Commerce business in The International Trade. Technological Forecasting and Social Change, 191(1), 122491. https://doi.org/10.1016/J.TECHFORE.2023.122491

Rojek, I., Mikołajewski, D., Mroziński, A., & Macko, M. (2024). Green Energy Management in Manufacturing Based on Demand Prediction by Artificial Intelligence—A Review. Electronics, 13(16), 3338. https://doi.org/10.3390/ELECTRONICS13163338

Shrivastav, M. (2021). Barriers Related to AI Implementation in Supply Chain Management. Journal of Global Information Management (JGIM), 30(8), 1–19. https://doi.org/10.4018/JGIM.296725

Tang, Y. M., Chau, K. Y., Lau, Y. Y., & Zheng, Z. (2023). Data-Intensive Inventory Forecasting with Artificial Intelligence Models for Cross-Border E-Commerce Service Automation. Applied Sciences, 13(5), 3051. https://doi.org/10.3390/APP13053051

Trong, H. B., & Kim, U. B. T. (2020). Application of Information and Technology in Supply Chain Management: Case Study of Artificial Intelligence – A Mini Review. European Journal of Engineering and Technology Research, 5(12), 19–23. https://doi.org/10.24018/EJENG.2020.5.12.2254

Wang, C., Ahmad, S. F., Bani Ahmad Ayassrah, A. Y. A., Awwad, E. M., Irshad, M., Ali, Y. A., Al-Razgan, M., Khan, Y., & Han, H. (2023). An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon, 9(8). https://doi.org/10.1016/J.HELIYON.2023.E18349

Witt, S., forecasting, C. W.-I. J. of, & 1995, undefined. (1995). Forecasting tourism demand: A review of empirical research. International Journal of Forecasting, 11(3), 447–475. https://www.sciencedirect.com/science/article/pii/0169207095005917

Zhang, D., Pee, L. G., & Cui, L. (2021). Artificial Intelligence in E-Commerce Fulfillment: A Case Study of Resource Orchestration at Alibaba’s Smart Warehouse. International Journal of Information Management, 57(1), 102304. https://doi.org/10.1016/J.IJINFOMGT.2020.102304

Downloads

Published

2024-08-22